Opposition-Based Artificial Bee Colony Algorithm
No Thumbnail Available
Issue Date
2011
Authors
El-Abd, Mohammed
Keywords
Type
Conference Paper
Abstract
The Artificial Bee Colony (ABC) algorithm is a relatively new algorithm for function optimization. The algorithm is inspired by the foraging behavior of honey bees. In this work, the performance of ABC is enhanced by introducing the concept of generalized opposition-based learning. This concept is introduced through the initialization step and through generation jumping. The performance of the proposed generalized opposition-based ABC (GOABC) is compared to the performance of ABC and opposition-based ABC (OABC) using the CEC05 benchmarks library.