• Login
    View Item 
    •   DSpace Home
    • Faculty/Staff Scholarship
    • College of Arts & Sciences
    • View Item
    •   DSpace Home
    • Faculty/Staff Scholarship
    • College of Arts & Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Review on Swarm Intelligence and Evolutionary Algorithms for Solving the Traffic Signal Control Problem

    Thumbnail
    Date
    2020-08-18
    Author
    Shaikh, Palwasha
    El-Abd, Mohammed
    Khanafer, Mounib
    Type
    Journal Article
    Peer-Reviewed
    Metadata
    Show full item record
    Abstract
    The rapid development of urban cities coupled with the rise in population has led to an exponentially growing number of vehicles on the roads for the latter to commute. This is adding to the already overbearing problem of traffic congestion. Short term, costly and short-sighted solutions of road infrastructure expansions are no longer suitable. One effective method of road resource allocation is focusing on the widely used traffic signal controllers' timing schedules. Searching for a suitable or an optimal schedule for the prior via brute force to ease traffic congestion might not be the most elegant or feasible solution. Nature-inspired algorithms including evolutionary and swarm intelligence algorithms are gaining a lot of momentum. Many of these algorithms have been used in the last two decades to address different applications in the smart city era including traffic signal control (TSC). This paper conducts a comprehensive literature review on applications of evolutionary and swarm intelligence algorithms to TSC. Surveyed work is categorized based on the set of decision variables, optimization objective(s), problem modeling and solution encoding. The paper, based on gaps identified by the conducted review, identifies promising future research directions and discusses where the future research is headed.
    URI
    https://dspace.auk.edu.kw/handle/11675/6686
    External link
    https://ieeexplore.ieee.org/document/9170901
    Collections
    • College of Arts & Sciences [809]

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by Atmire