Show simple item record

dc.contributor.authorEL Abd, Mohammed
dc.contributor.authorDamaj, Issam
dc.contributor.authorElshafei, Mohamed
dc.date.accessioned2021-01-18T07:22:49Z
dc.date.available2021-01-18T07:22:49Z
dc.date.issued2/2/2020
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0141933119300407
dc.identifier.urihttps://dspace.auk.edu.kw/handle/11675/6665
dc.description.abstractEngineering optimization techniques are computationally intensive and can challenge implementations on tightly-constrained embedded systems. Particle Swarm Optimization (PSO) is a well-known bio-inspired algorithm that is adopted in various applications, such as, transportation, robotics, energy, etc. In this paper, a high-speed PSO hardware processor is developed with focus on outperforming similar state-of-the-art implementations. In addition, the investigation comprises the development of an analytical framework that captures wide characteristics of optimization algorithm implementations, in hardware and software, using key simple and combined heterogeneous indicators. The framework proposes a combined Optimization Fitness Indicator that can classify the performance of PSO implementations when targeting different evaluation functions. The two targeted processing systems are Field Programmable Gate Arrays for hardware implementations and a high-end multi-core computer for software implementations. The investigation confirms the successful development of a PSO processor with appealing performance characteristics that outperforms recently presented implementations. The proposed hardware implementation attains 23,300 improvement ratio of execution times with an elliptic evaluation function. In addition, a speedup of 1777 times is achieved with a Shifted Schwefels function. Indeed, the developed framework successfully classifies PSO implementations according to multiple and heterogeneous properties for a variety of benchmark functions.
dc.publisherMicroprocessors and Microsystems
dc.relation.journalMicroprocessors and Microsystems
dc.titleAn analytical framework for high-speed hardware particle swarm optimization
dc.typeJournal Article
dcterms.bibliographicCitationDamaj, I., Elshafei, M., El-Abd, M., & Aydin, M. E. (2020). An analytical framework for high-speed hardware particle swarm optimization. Microprocessors and Microsystems, 72, 102949. https://doi.org/https://doi.org/10.1016/j.micpro.2019.102949


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record