• Login
    View Item 
    •   DSpace Home
    • Faculty/Staff Scholarship
    • College of Engineering and Applied Sciences
    • View Item
    •   DSpace Home
    • Faculty/Staff Scholarship
    • College of Engineering and Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Angle Histogram of Hough Transform as Shape Signature for Visual Object Classification – (AHOC).

    Thumbnail
    Date
    4/5/2020
    Author
    Rababaah, Aaron
    Metadata
    Show full item record
    Abstract
    This work presents a new method for object classification using Hough transform (HT) and angle histogram as an object signature. Several methods are reported in the literature that exploit HT and other techniques as a pre-processing step to characterise objects to be used in detection, recognition, classification, etc. HT is a powerful technique to extract shape features from 2D objects; it has been used in many studies and implemented successfully in many applications. Our study is unique by post processing HT voting space using a binary threshold then computing an angle histogram of the resulting angle space as a shape signature of objects. Our image set consisted of 25 simple geometric shapes and six complex natural object classes of: trees, people, cars, airplanes, houses and horses. The method was trained and tested using 225 images from six different classes and found to be robust with a classification accuracy of 95.83%.
    URI
    https://www.inderscience.com/info/inarticle.php?artid=108150
    https://dspace.auk.edu.kw/handle/11675/6647
    Collections
    • College of Engineering and Applied Sciences [64]

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2021  DuraSpace
    DSpace Express is a service operated by Atmire