• Login
    View Item 
    •   DSpace Home
    • Faculty/Staff Scholarship
    • College of Arts & Sciences
    • View Item
    •   DSpace Home
    • Faculty/Staff Scholarship
    • College of Arts & Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancing the Local Search Ability of the Brain Storm Optimization Algorithm by Covariance Matrix Adaptation

    Thumbnail
    Date
    2019
    Author
    El-Abd, Mohammed
    Elsayed, Seham
    Sallam, Karam
    Type
    Book Chapter
    Metadata
    Show full item record
    Abstract
    Recently, the Brain Storm Optimization (BSO) algorithm has attracted many researchers and practitioners attention from the evolutionary computation community. However, like many other population based algorithms, BSO shows good performance at global exploration but not good enough at local exploitation. To alleviate this issue, in this chapter, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is utilized in the Global-best BSO (GBSO), with the aim to combine the exploration ability of BSO and local ability of CMA-ES and to design an improved version of BSO. The performance of the proposed algorithm is tested by solving 28 classical optimization problems and the proposed algorithm is shown to perform better than GBSO.
    URI
    https://link.springer.com/chapter/10.1007/978-3-030-15070-9_5
    https://dspace.auk.edu.kw/handle/11675/5720
    Collections
    • College of Arts & Sciences [809]

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by Atmire