Cooperative Co-evolution using LSHADE with Restarts For The CEC15 Benchmarks
Abstract
In this paper, we test the performance of an LSHADE Cooperative Co-evolutionary (CC) algorithm using the CEC15 benchmarks. First, we apply the recently proposed Global Differential Grouping (GDG) to learn the underlying interdependencies of the problem variables. GDG divides both separable and non-separable variables among multiple sets. Second, the method adopts the LSHADE algorithm within the CC framework to simultaneously optimize the identified groups. Results are reported for all required problem sizes.